VisualC++ を使った OpenGL 入門
【4日目】 光源
4日目。光源の登場。
物体に光と影が描画されます。
OpenGL と C++ によるソース
#include <GL/glut.h> int WindowPositionX = 100; //生成するウィンドウ位置のX座標 int WindowPositionY = 100; //生成するウィンドウ位置のY座標 int WindowWidth = 512; //生成するウィンドウの幅 int WindowHeight = 512; //生成するウィンドウの高さ char WindowTitle[] = "世界の始まり"; //ウィンドウのタイトル //---------------------------------------------------- // 直方体の定義 //---------------------------------------------------- GLdouble vertex[][3] = { { 0.0, 0.0, 0.0 }, { 2.0, 0.0, 0.0 }, { 2.0, 2.0, 0.0 }, { 0.0, 2.0, 0.0 }, { 0.0, 0.0, 30.0 }, { 2.0, 0.0, 30.0 }, { 2.0, 2.0, 30.0 }, { 0.0, 2.0, 30.0 } }; int face[][4] = {//面の定義 { 0, 1, 2, 3 }, { 1, 5, 6, 2 }, { 5, 4, 7, 6 }, { 4, 0, 3, 7 }, { 4, 5, 1, 0 }, { 3, 2, 6, 7 } }; GLdouble normal[][3] = {//面の法線ベクトル { 0.0, 0.0,-1.0 }, { 1.0, 0.0, 0.0 }, { 0.0, 0.0, 1.0 }, {-1.0, 0.0, 0.0 }, { 0.0,-1.0, 0.0 }, { 0.0, 1.0, 0.0 } }; //---------------------------------------------------- // 物質質感の定義 //---------------------------------------------------- struct MaterialStruct { GLfloat ambient[4]; GLfloat diffuse[4]; GLfloat specular[4]; GLfloat shininess; }; //jade(翡翠) MaterialStruct ms_jade = { {0.135, 0.2225, 0.1575, 1.0}, {0.54, 0.89, 0.63, 1.0}, {0.316228, 0.316228, 0.316228, 1.0}, 12.8}; //ruby(ルビー) MaterialStruct ms_ruby = { {0.1745, 0.01175, 0.01175, 1.0}, {0.61424, 0.04136, 0.04136, 1.0}, {0.727811, 0.626959, 0.626959, 1.0}, 76.8}; //---------------------------------------------------- // 色の定義の定義 //---------------------------------------------------- GLfloat red[] = { 0.8, 0.2, 0.2, 1.0 }; //赤色 GLfloat green[] = { 0.2, 0.8, 0.2, 1.0 };//緑色 GLfloat blue[] = { 0.2, 0.2, 0.8, 1.0 };//青色 GLfloat yellow[] = { 0.8, 0.8, 0.2, 1.0 };//黄色 GLfloat white[] = { 1.0, 1.0, 1.0, 1.0 };//白色 GLfloat shininess = 30.0;//光沢の強さ //----------------------------------------- //---------------------------------------------------- // 関数プロトタイプ(後に呼び出す関数名と引数の宣言) //---------------------------------------------------- void Initialize(void); void Display(void); void Ground(void); //大地の描画 //---------------------------------------------------- // メイン関数 //---------------------------------------------------- int main(int argc, char *argv[]){ glutInit(&argc, argv);//環境の初期化 glutInitWindowPosition(WindowPositionX, WindowPositionY);//ウィンドウの位置の指定 glutInitWindowSize(WindowWidth, WindowHeight); //ウィンドウサイズの指定 glutInitDisplayMode(GLUT_RGBA | GLUT_DEPTH | GLUT_DOUBLE);//ディスプレイモードの指定 glutCreateWindow(WindowTitle); //ウィンドウの作成 glutDisplayFunc(Display); //描画時に呼び出される関数を指定する(関数名:Display) Initialize(); //初期設定の関数を呼び出す glutMainLoop(); return 0; } //---------------------------------------------------- // 初期設定の関数 //---------------------------------------------------- void Initialize(void){ glClearColor(1.0, 1.0, 1.0, 1.0); //背景色 glEnable(GL_DEPTH_TEST);//デプスバッファを使用:glutInitDisplayMode() で GLUT_DEPTH を指定する //光源の設定-------------------------------------- GLfloat light_position0[] = { -50.0, -50.0, 20.0, 1.0 }; //光源0の座標 glLightfv(GL_LIGHT0, GL_POSITION, light_position0); //光源0を //透視変換行列の設定------------------------------ glMatrixMode(GL_PROJECTION);//行列モードの設定(GL_PROJECTION : 透視変換行列の設定、GL_MODELVIEW:モデルビュー変換行列) glLoadIdentity();//行列の初期化 gluPerspective(30.0, (double)WindowWidth/(double)WindowHeight, 0.1, 1000.0); //透視投影法の視体積gluPerspactive(th, w/h, near, far); //視点の設定------------------------------ gluLookAt( 0.0, -100.0, 50.0, // 視点の位置x,y,z; 0.0, 100.0, 0.0, // 視界の中心位置の参照点座標x,y,z 0.0, 0.0, 1.0); //視界の上方向のベクトルx,y,z //---------------------------------------- } //---------------------------------------------------- // 描画の関数 //---------------------------------------------------- void Display(void) { glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); //バッファの消去 //モデルビュー変換行列の設定-------------------------- glMatrixMode(GL_MODELVIEW);//行列モードの設定(GL_PROJECTION : 透視変換行列の設定、GL_MODELVIEW:モデルビュー変換行列) glLoadIdentity();//行列の初期化 glViewport(0, 0, WindowWidth, WindowHeight); //---------------------------------------------- //陰影ON----------------------------- glEnable(GL_LIGHTING); glEnable(GL_LIGHT0);//光源0を利用 //----------------------------------- //球 glPushMatrix(); glMaterialfv(GL_FRONT, GL_AMBIENT, ms_ruby.ambient); glMaterialfv(GL_FRONT, GL_DIFFUSE, ms_ruby.diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, ms_ruby.specular); glMaterialfv(GL_FRONT, GL_SHININESS, &ms_ruby.shininess); glTranslated(0.0, 10.0, 20.0);//平行移動値の設定 glutSolidSphere(4.0, 20, 20);//引数:(半径, Z軸まわりの分割数, Z軸に沿った分割数) glPopMatrix(); //立方体 glPushMatrix(); glMaterialfv(GL_FRONT, GL_DIFFUSE, green); glTranslated(-20.0, 0.0, 20.0);//平行移動値の設定 glutSolidCube(10.0);//引数:(一辺の長さ) glPopMatrix(); //円錐 glPushMatrix(); glMaterialfv(GL_FRONT, GL_DIFFUSE, blue); glTranslated(20.0, 100.0, 0.0);//平行移動値の設定 glutSolidCone(5.0,10.0,20,20);//引数:(半径, 高さ, Z軸まわりの分割数, Z軸に沿った分割数) glPopMatrix(); //直方体 glPushMatrix(); glMaterialfv(GL_FRONT, GL_AMBIENT, ms_jade.ambient); glMaterialfv(GL_FRONT, GL_DIFFUSE, ms_jade.diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, ms_jade.specular); glMaterialfv(GL_FRONT, GL_SHININESS, &ms_jade.shininess); glTranslated(30.0, 50.0, 0.0);//平行移動値の設定 glBegin(GL_QUADS); for (int j = 0; j < 6; ++j) { glNormal3dv(normal[j]); //法線ベクトルの指定 for (int i = 0; i < 4; ++i) { glVertex3dv(vertex[face[j][i]]); } } glEnd(); glPopMatrix(); //陰影OFF----------------------------- glDisable(GL_LIGHTING); //----------------------------------- Ground(); glutSwapBuffers(); //glutInitDisplayMode(GLUT_DOUBLE)でダブルバッファリングを利用可 } //---------------------------------------------------- // 大地の描画 //---------------------------------------------------- void Ground(void) { double ground_max_x = 300.0; double ground_max_y = 300.0; glColor3d(0.8, 0.8, 0.8); // 大地の色 glBegin(GL_LINES); for(double ly = -ground_max_y ;ly <= ground_max_y; ly+=10.0){ glVertex3d(-ground_max_x, ly,0); glVertex3d(ground_max_x, ly,0); } for(double lx = -ground_max_x ;lx <= ground_max_x; lx+=10.0){ glVertex3d(lx, ground_max_y,0); glVertex3d(lx, -ground_max_y,0); } glEnd(); }
ソースの解説
光源番号0の光源の座標を決めます。
光源は0番目から順番に指定することができます。
GLfloat light_position0[] = { -50.0, -50.0, 20.0, 1.0 }; //光源0の座標 glLightfv(GL_LIGHT0, GL_POSITION, light_position0); //光源0を
光を当てたい物体の前で、光源の全体のスイッチと光源番号1のスイッチを入れます。
glEnable(GL_LIGHTING); glEnable(GL_LIGHT0);//光源0を利用
光源を作用させると、「glColor3d」関数で指定していた色が無効となります。
「glMaterialfv」を利用して、物体に光源に対する質感を与えます。
glMaterialfv(GL_FRONT, GL_AMBIENT, ms_ruby.ambient); glMaterialfv(GL_FRONT, GL_DIFFUSE, ms_ruby.diffuse); glMaterialfv(GL_FRONT, GL_SPECULAR, ms_ruby.specular); glMaterialfv(GL_FRONT, GL_SHININESS, &ms_ruby.shininess);
「GLUT」に関数が与えられている球(glutSolidSphere)や立方体(glutSolidCube)の場合には、 物体の「表」「裏」の情報に与えたれているが、任意の物体を自前で定義した場合には、各面に対して法線ベクトルを定義する必要があります。
GLdouble normal[][3] = {//面の法線ベクトル { 0.0, 0.0,-1.0 }, { 1.0, 0.0, 0.0 }, { 0.0, 0.0, 1.0 }, {-1.0, 0.0, 0.0 }, { 0.0,-1.0, 0.0 }, { 0.0, 1.0, 0.0 } }; glBegin(GL_QUADS); for (int j = 0; j < 6; ++j) { glNormal3dv(normal[j]); //法線ベクトルの指定 for (int i = 0; i < 4; ++i) { glVertex3dv(vertex[face[j][i]]); } } glEnd();
参考ページ
物体の質感を出すために必要な構造体として、 「OpenGL(Akita National College of Technology Yamamoto's Laboratory )」 のページ内にあるソースを利用させていただきました。
【目次】 (VisualC++ を使った OpenGL 入門)
- 【参考文献リスト】
- ■ 【0日目】はじめに ・ (0.1日目)OpenGL と Visual C++ 2008 Express Edition の準備
- ■ 【1日目】 世界の始まり ・(1.1日目)OpenGL の基本形
- ■ 【2日目】 地平線 ・ (2.1日目)視点の設定
- ■ 【3日目】 創造物
- ■ 【4日目】 光源
- ■ 【5日目】 視点
- ■ 【6日目】 記憶
- ■ 【7日目】 キーボード入力
- ■ 【8日目】 影
- ■ 【9日目】 文字
- ■ 【10日目】 回転
未分類
- ・ Windows7 OpenGL freeglut のインストール
- ・ OpenGLで霧を表現
- ・ 光源のパラメータ設定1
- ・ 光源のパラメータ設定2
- ・ 光源のパラメータ設定3
- ・ 平面に光をあてるときの注意点
- ・ 波動方程式のテスト
- ・ OpenGLで霧を表現
- ・ OpenGLのカラーサンプル(teapots.c)
- ・ 直方体を回転させよう!