一様媒質中における一般解と具体例
2軸ガウシアンによる電子パルスの拡散
電子による1軸ガウシアンパルスは実空間の幅が時間と共に広がることは「【1-3】1軸ガウシアンによる光パルスと電子パルス」で示しました。本節では同様に2軸ガウシアンパルスの様子を見てみます。 前節で定義した2軸パルスの表式は
で与えられます。 中心波数 k_0 = 0 とすることで、パルスの中心は z=0 で留まるため、拡散の様子に着目することができます。 波数空間と実空間における半値全幅の時間依存は【1-3】と同様に計算することができます。 波動関数ψの時間発展を計算した結果が次のとおりです。
電子パルスの拡散の様子
波動関数ψの時間発展を計算した結果が次のとおりです。
赤:波動関数の実部
青:波動関数の虚部
図のx軸のスケールは ×10^{-11}[m] で、時間間隔は 2*10^{-14}[s] で計算しています。
時間と共にパルスが広がっている様子がわかります。
下の図は、電子パルスの振幅の絶対値を描画しています。
C++プログラムソース
■電子の2軸パルスの広がりSchrodinger_pulse2_2.cpp
gnuplot テンプレート
【目次】シュレディンガー方程式とマクスウェル方程式
- 0.導入
【0-1】はじめに
【0-2】本稿で取り扱う基礎方程式 -
1.一様媒質中における一般解と具体例
【1-1】一般解の表式
【1-2】平面波の時間発展
【1-3】1軸ガウシアンによる光パルスと電子パルス (1軸ガウシアンによる電子パルスの拡散)
【1-4】2軸ガウシアンによる光パルスと電子パルス (2軸ガウシアンによる電子パルスの拡散, 2軸ガウシアンによる光パルスの拡散)
【1-5】3軸ガウシアンによる光パルスと電子パルス
【1-6】垂直1軸ガウシアンによる光ビームと電子ビーム
【1-7】垂直2軸ガウシアンによる光ビームと電子ビーム
【1-8】直線偏光と円偏光
-
2.異なる媒質の境界における電磁波と電子波
【2-1】異なる媒質の境界における波動の一般論
【2-2】電磁波に対する透過係数と反射係数の導出
【2-3】電子波に対する透過係数と反射係数の導出
【2-4】境界面において任意の形状の波に対して時間発展を与える一般表式
【2-5】境界面における平面波電磁波の時間発展
【2-6】境界面における平面波電子波の時間発展
【2-7】境界面における1軸ガウシアンによる光パルスと電子パルスの時間発展
【2-8】境界面における2軸ガウシアンによる光パルスと電子パルスの時間発展
【2-9】境界面における3軸ガウシアンによる光パルスと電子パルスの時間発展
【2-10】境界面における垂直1軸ガウシアンによる光ビームと電子ビームの時間発展
【2-11】境界面における垂直2軸ガウシアンによる光ビームと電子ビームの時間発展
-
3.転送行列法
・電子のトンネル確率
・光のトンネル効果
- 4.1層バリアにおける光パルスと電子パルスのシミュレーション
- 5・ポテンシャル障壁による量子粒子のトンネル時間
- 6・フォトニックバンドギャップによる光パルスのトンネル時間
-
7.無限周期構造中の分散関係,群速度,位相速度
・転送行列とブロッホの定理
・ブロッホ波数と透過係数の関係
・分散関係
・透過係数と群速度の関係
-
8.有限サイズの結晶における光パルスと電子パルスの横断時間
・光パルスと電子パルスの横断時間の導出
・パルス伝搬速度と群速度の関係
-
9.フォトニックバンド端における光パルスの遅延
・1次元フォトニック結晶における透過係数と横断時間の数値計算
・横断時間の解析解
-
10.バンド端における電子パルスの遅延
・1次元クローニッヒ・ペニーモデルにおける透過係数と横断時間の数値計算
・横断時間の解析解
- 11.非周期構造における光パルスと電子パルスと伝搬